Spazi di probabilita'. Elementi di calcolo combinatorio e spazi di probabilità finiti uniformi. Probabilità condizionata e indipendenza. Variabili aleatorie discrete e assolutamente continue. Coppie di variabili aleatorie discrete e congiuntamente assolutamente continue. Variabili aleatorie congiuntamente Gaussiane. Legge dei grandi numeri, teorema centrale del limite.
1. Spazi di probabilità: eventi, operazioni tra eventi, spazi di probabilità e loro proprietà. Spazi di probabilità finiti uniformi. Calcolo combinatorio: permutazioni, disposizioni, combinazioni, coefficienti binomiali. Estrazioni da un’urna senza rimpiazzo.
2. Probabilità condizionata e sue proprietà, condizionamento successivo dell’intersezione di più eventi, formula della probabilità totale (con dimostrazione). Teorema di Bayes (con dimostrazione). Eventi indipendenti a coppie e famiglie di eventi indipendenti. Estrazioni da un’urna con rimpiazzo. Prove Bernoulliane. Eventi condizionatamente indipendenti.
3. Variabili aleatorie discrete: densità discreta di probabilità e sue proprietà. Legge binomiale, ipergeometrica, geometrica, di Poisson. Calcolo della densità di una funzione di una variabile aleatoria discreta.
4. Variabili aleatorie assolutamente continue: densità di probabilità e sue proprietà. Legge uniforme, esponenziale, Gaussiana.
Funzione di distribuzione e sue proprietà (anche per variabili aleatorie discrete). Calcolo della funzione di distribuzione e della densità di probabilità di una funzione di una variabile aleatoria assolutamente continua.
5. Valore atteso e sue proprietà. Valore atteso di una funzione di una variabile aleatoria discreta o continua. Varianza e sue proprietà. Standardizzazione. Quantili.
6. Leggi congiunte di due variabili aleatorie discrete e di due variabili aleatorie congiuntamente assolutamente continue: calcolo delle densità marginali, indipendenza, densità condizionata. Calcolo della probabilità di eventi definiti da due variabili aleatorie. Calcolo della funzione di distribuzione e della densità di una funzione di due variabili aleatorie congiuntamente assolutamente continue. Densità della somma di due variabili aleatorie. Somma di due variabili aleatorie Gaussiane indipendenti. Somma di n variabili aleatorie Gaussiane indipendenti.
7. Valore atteso di una funzione di due variabili aleatorie. Valore atteso della somma di n variabili aleatorie. Valore atteso del prodotto di due v.a. indipendenti. Covarianza e coefficiente di correlazione e loro proprietà. Varianza della somma di due variabili aleatorie. Varianza della somma di n variabili aleatorie. Matrice di covarianza.
Valore atteso condizionato e sue principali proprietà.
8. Coppie di variabili aleatorie congiuntamente Gaussiane: forma della densità, indipendenza, marginali, trasformazioni affini, densità condizionata.
n-ple di v.a. congiuntamente Gaussiane: forma della densità, indipendenza, marginali, trasformazioni affini, densità condizionata.
9.Legge dei grandi numeri: lemma di Chebyshev, legge debole dei grandi numeri. Legge forte dei grandi numeri.
Teorema centrale del limite. Approssimazione normale della binomiale.
SEDE DI CHIETI
Via dei Vestini,31
Centralino 0871.3551
SEDE DI PESCARA
Viale Pindaro,42
Centralino 085.45371
email: info@unich.it
PEC: ateneo@pec.unich.it
Partita IVA 01335970693